欢迎访问新电子!
点击这里给我留言 登录  |  注册   |   加入收藏   |   设为首页
论坛社区

变频器应用维护保养

    作者:bhwqee   时间:2016/12/21 9:32:37
登录后发帖    回复         
     变频器应用维护保养

1、应用
由于变频器能适应生产工艺的多方面要求,尤其是在工业自动化控制应用上,交流变频调速技术已经上升为工业自动化控制的主流。交流调速系统的性能已经可以和直流调速系统相匹敌,甚至可以超过直流系统。它采用的全数字控制方式,使信息处理能力大幅度地增强。同时它将实用经验和技巧不断地融入软件功能中,采用模拟控制方式无法实现的复杂控制在今天都已成为可能,使变频器的可靠性、可使用性、可维护性功能得以充实。由于变频器具有调速性能好、调速范围宽和运行效率高,使用操作方便,且宜于同其它设备接口等一系列优点,所以应用越来越广泛。多年来,我们在生产实际应用中不断学习,积累了一些变频器的维护保养和维修的经验。
2、维护保养
  由于电力电子技术和微电子技术的快速发展,变频器改型换代速度也比较快,不断推出新型产品,性能不断提高,功能不断充实、增强。现在国内市场销售的变频器品牌比较多,如DanfossABBSIEMENSGESchneider等等,国产变频器品牌比较多,虽然种类繁多,但功能及使用上却基本类似。总的来讲,其使用、维护保养及故障处理方法是基本相同的。在实际应用中,变频器受周围的温度、湿度、振动、粉尘、腐蚀性气体等环境条件的影响,其性能会有一些变化。如使用合理、维护得当,则能延长使用寿命,并减少因突然故障造成的生产损失。如果使用不当,维护保养工作跟不上去,就会出现运行故障,导致变频器不能正常工作,甚至造成变频器过早的损坏,而影响生产设备的正常运行。因此日常维护与定期检查是必不可少的。
 2.1日常维护与检查
  对于连续运行的变频器,可以从外部目视检查运行状态。定期对变频器进行巡视检查,检查变频器运行时是否有异常现象。通常应作如下检查:
  (1)环境温度是否正常,要求在-10+40范围内,以25左右为好;
  (2)变频器在显示面板上显示的输出电流、电压、频率等各种数据是否正常;
  (3)显示面板上显示的字符是否清楚,是否缺少字符;
  (4)用测温仪器检测变频器是否过热,是否有异味;
  (5)变频器风扇运转是否正常,有无异常,散热风道是否通畅;
  (6)变频器运行中是否有故障报警显示;
  (7)检查变频器交流输入电压是否超过最大值。极限是418V(380V×1.1),如果主电路外加输入电压超过极限,即使变频器没运行,也会对变频器线路板造成损坏。
  2.2定期检查
  利用每年一次的大修时间,将检查重点放在变频器日常运行时无法巡视到的部位。
  (1)作定期检查时,操作前必须切断电源,变频器停电后待操作面板电源指示灯熄灭后,等待4min(变频器的容量越大,等待时间越长,最长为15min)使得主电路直流滤波电容器充分放电,用万用表确认电容器放电完后,再进行操作。
  (2)将变频器控制板、主板拆下,用毛刷、吸尘器清扫变频器线路板及内部IGBT模块、输入输出电抗器等部位。线路板脏污的地方,应用棉布沾上酒精或中性化学剂擦除。
  (3)检查变频器内部导线绝缘是否有腐蚀过热的痕迹及变色或破损等,如发现应及时进行处理或更换。
  (4)变频器由于振动、温度变化等影响,螺丝等紧固部件往往松动,应将所有螺丝全部紧固一遍。
  (5)检查输入输出电抗器、变压器等是否过热,变色烧焦或有异味。
  (6)检查中间直流回路滤波电解电容器小凸肩(安全阀)是否胀出,外表面是否有裂纹、漏液、膨胀等。一般情况下滤波电容器使用周期大约为5年,检查周期最长为一年,接近寿命时,检查周期最好为半年。电容器的容量可用数字电容表测量,当容量下降到额定容量的80%以下时,应予更换。
  (7)检查冷却风扇运行是否完好,如有问题则应进行更换。冷却风扇的寿命受限于轴承,根据变频器运行情况需要23年更换一次风扇或轴承。检查时如发现异常声音、异常振动,同样需要更换。
  (8)检查变频器绝缘电阻是否在正常范围内(所有端子与接地端子),注意不能用兆欧表对线路板进行测量,否则会损坏线路板的电子元器件。
  (9)将变频器的RST端子和电源端电缆断开,UVW端子和电机端电缆断开,用兆欧表测量电缆每相导线之间以及每相导线与保护接地之间的绝缘电阻是否符合要求,正常时应大于1MΩ
  (10)变频器在检修完毕投入运行前,应带电机空载试运行几分钟,并校对电机的旋转方向。
  2.3变频器本身的保护:
  变频器本身具有各种保护功能,如:负载侧接地保护、短路保护、电流限制、逆变器过热、过载等,其自诊断功能、报警警告功能也特别完善。了解这些功能对于正确使用变频器及故障查找是非常重要的。
  3、故障判断及处理
  我公司Danfoss变频器在使用中因受环境条件等因素的影响而陆续出现一些故障现象,在维修过程中,笔者积累了一些故障判断和处理经验。
  下面以Danfoss变频器为例作一介绍:当变频器出现故障时,保护功能动作,变频器立即跳闸,电机由运行状态到停止,报警指示红色发光二极管变亮,液晶显示部分提示报警信息代码或故障内容。这时可以根据信息代码来分析判断变频器的故障范围,如果是软性故障,可将变频器进行断电复位。如还不能恢复正常,只能采用手动或自动初始化,初始化正常后按照参数表重新将数据输入设定。这样,变频器就可以在故障较轻的情况下恢复正常使用。若经以上操作后变频器仍不正常,就要根据故障现象来检查变频器损坏的部位,更换元器件或电路板。故障查找时必须按变频器的提示顺序进行。例如:
  (1)故障代码36,提示为主电源故障,则三相整流桥模块可能击穿短路或开路。
  (2)故障代码14,提示接地故障,可用兆欧表检查电机绕组、查看电缆绝缘是否损坏。
  (3)故障代码37,提示逆变器故障,则IGBT模块可能击穿短路。IGBT模块短路,主回路熔断器也将熔断。当IGBT模块某一相门极损坏时,变频器会出现过流保护现象,这时应对IGBT模块进行检查。
  变频器运行时,如频繁出现限流报警或过流保护,应检查负载部分以及变频器IGBT模块是否正常,如正常,则此故障为变频器主板霍尔磁补偿式电流传感器损坏。霍尔磁补偿式电流传感器是一种测量正弦与非正弦周期量的电流值,能真实反映电流的波形,给变频器提供一个控制与保护信号。变频器上使用的该元件大部分为瑞士LEM公司LA系列的产品,其LA系列霍尔磁补偿式电流传感器可分为三端引出脚和五端引出脚两种。变频器容量不同,主板上LA系列霍尔磁补偿式电流传感器规格也不相同。
  生产运行表明,粘胶纤维生产现场含硫化氢的腐蚀性气体会给变频器电路板的电子元器件带来相当大的危害,我们通过给电气控制室送正压新鲜风来改善环境条件,并采用乐泰电子线路板用喷涂胶,对变频器线路板表面作防腐涂层处理,有效地降低了变频器的故障率,提高了使用寿命。
  电子元器件对静电是非常敏感的,如被静电放电破坏后,将造成电子元器件软击穿,软击穿会导致线路板无法正常工作。所以在更换线路板时必须注意,一定要确保工作之前戴好接地手环,将腕带直接接地,确保人体处于零电位,以防止人体的静电对线路板造成损坏。如没有接地手环,在更换线路板时可用手摸一下变频器金属外壳,使人体的静电通过变频器外壳放掉(其金属外壳导静电)。为确保变频器线路板备件的安全,在保管期间,应放在有防静电材料的袋中存放。
 4、元器件好坏的简易测试法
  在维修过程中,根据故障情况要用万用表来检测电子元器件的好坏,如测量方法不正确就很可能导致误判断,这将给维修工作造成困难,甚至造成不必要的经济损失。测量方法分为元器件测试和线路板在路测试两种方式。在路测试:断开变频器电源,在不拆动线路板元器件的条件下,测量线路板上的元器件。对于元器件击穿、短路、开路性故障,这种检测方法可以方便快捷的查找出损坏的元器件,但还应考虑线路板上所测元器件与其并联的元器件对测量结果所产生的影响,以免造成误判断错误。下面介绍元器件好坏的判断方法:
  4.1普通二极管的检测
  用MF47型万用表测量,将红、黑表笔分别接在二极管的两端,读取读数,再将表笔对调测量。根据两次测量结果判断,通常小功率锗二极管的正向电阻值为300500Ω,硅二极管约为1kΩ或更大些。锗管反相电阻为几十千欧,硅管反向电阻在500kΩ以上(大功率二极管的数值要小的多)。好的二极管正向电阻较低,反向电阻较大,正反向电阻差值越大越好。如果测得正、反向电阻很小均接近于零,说明二极管内部已短路;若正、反向电阻很大或趋于无穷大,则说明管子内部已断路。在这两种情况下二极管就需报废。
  在路测试:测试二极管PN结正反向电阻,比较容易判断出二极管是击穿短路还是断路。4.2三极管检测
  将数字万用表拨到二极管档,用表笔测PN结,如果正向导通,则显示的数字即为PN结的正向压降。
  先确定集电极和发射极;用表笔测出两个PN结的正向压降,压降大的是发射极e,压降小的是集电极c。在测试两个结时,红表笔接的是公共极,则被测三极管为NPN型,且红表笔所接为基极b;如果黑表笔接的是公共极,则被测三极管是PNP型,且此极为基极b。三极管损坏后PN结有击穿短路和开路两种情况。
  在路测试:在路测试三极管,实际上是通过测试PN结的正、反向电阻,来达到判断三极管是否损坏。支路电阻大于PN结正向电阻,正常时所测得正、反向电阻应有明显区别,否则PN结损坏了。支路电阻小于PN结正向电阻时,应将支路断开,否则就无法判断三极管的好坏。
 4.3三相整流桥模块检测
  以SEMIKRON(西门子)整流桥模块为例,如附图所示。将数字万用表拨到二极管测试档,黑表笔接COM,红表笔接,用红、黑两表笔先后测345相与21极之间的正反向二极管特性,来检查判断整流桥是否完好。所测的正反向特性相差越大越好;如正反向为零,说明所检测的一相已被击穿短路;如正反向均为无穷大,说明所检测的一相已经断路。整流桥模块只要有一相损坏,就应更换。
  4.4逆变器IGBT模块检测
  将数字万用表拨到二极管测试档,测试IGBT模块C1.E1C2.E2之间以及栅极GE1E2之间正反向二极管特性,来判断IGBT模块是否完好。
  以德国eupec25A/1200V六相IGBT模块为例,(参见附图)。将负载侧UVW相的导线拆除,使用二极管测试档,红表笔接P(集电极C1),黑表笔依次测UVW(发射极E1),万用表显示数值为最大;将表笔反过来,黑表笔接P,红表笔测UVW,万用表显示数值为400左右。再将红表笔接N(发射极E2),黑表笔测UVW,万用表显示数值为400左右;黑表笔接N,红表笔测UVW(集电极C2),万用表显示数值为最大。各相之间的正反向特性应相同,若出现差别说明IGBT模块性能变差,应予更换。IGBT模块损坏时,只有击穿短路情况出现。
  红、黑两表笔分别测栅极G与发射极E之间的正反向特性,万用表两次所测的数值都为最大,这时可判定IGBT模块门极正常。如果有数值显示,则门极性能变差,此模块应更换。当正反向测试结果为零时,说明所检测的一相门极已被击穿短路。门极损坏时电路板保护门极的稳压管也将击穿损坏。
  4.5电解电容器的检测
  用MF47型万用表测量时,应针对不同容量的电解电容器选用万用表合适的量程。根据经验,一般情况下,47μF以下的电解电容器可用R×1K档测量,大于47μF的电解电容器可用R×100档测量。
  将万用表红表笔接电容器负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大幅度,接着逐渐向左回转,直到停在某一位置(返回无穷大位置)。此时的阻值便是电解电容器的正向漏电阻。此值越大,说明漏电流越小,电容器性能越好。然后,将红、黑表笔对调,万用表指针将重复上述摆动现象。但此时所测阻值为电解电容器的反相漏电阻,此值略小于正向漏电阻。即反相漏电流比正向漏电流要大。实际使用经验表明,电解电容器的漏电阻一般应在几百千欧以上,否则将不能正常工作。
  在测试中,若正向、反相均无充电现象,即表针不动,则说明电容器容量消失或内部短路;如果所测阻值很小或为零,说明电容器漏电大或已击穿损坏,不能再使用。
  在路测试:在路测试电解电容器只宜检查严重漏电或击穿的故障,轻微漏电或小容量电解电容器测试的准确性很差。在路测试还应考虑其它元器件对测试的影响,否则读出的数值就不准确,会影响正常判断。电解电容器还可以用电容表来检测两端之间的电容值,以判断电解电容器的好坏。
  4.6电感器和变压器简易测试
  (1)电感器的测试
  用MF47型万用表电阻档测试电感器阻值的大小。若被测电感器的阻值为零,说明电感器内部绕组有短路故障。注意操作时一定要将万用表调零,反复测试几次。若被测电感器阻值为无穷大,说明电感器的绕组或引出脚与绕组接点处发生了断路故障。
  (2)变压器的简易测试
  绝缘性能测试:用万用表电阻档R×10K分别测量铁心与一次绕组、一次绕组与二次绕组、铁心与二次绕组之间的电阻值,应均为无穷大。否则说明变压器绝缘性能不良。
  测量绕组通断:用万用表R×1档,分别测量变压器一次、二次各个绕组间的电阻值,一般一次绕组阻值应为几十欧至几百欧,变压器功率越小电阻值越大;二次绕组电阻值一般为几欧至几百欧,如某一组的电阻值为无穷大,则该组有断路故障
  注意:这种测量方法只是一种比较粗略的估测,有些绕组匝间绝缘轻微短路的变压器是检测不准的。
  4.7电阻器的阻值简易测试
  在路测量电阻时要切断线路板电源,要考虑电路中的其它元器件对电阻值的影响。如果电路中接有电容器,还必须将电容器放电。万用表表针应指在标度尺的中心部分,读数才准确。
  4.8贴片式元器件
  (1)贴片式元器件种类
  变频器电子线路板现在大部分采用贴片式元器件也称为表面组装元器件,它是一种无引线或引线很短的适于表面组装的微小型电子元器件。贴片式元器件品种规格很多,按形状分可分为矩形、圆柱形和异形结构。按类型可分为片式电阻器、片式电容器、片式电感器、片式半导体器件(可分为片式二极管和片式三极管)、片式集成电路。
  (2)贴片式元器件的拆、焊
  用35W内热式电烙铁,配长寿命耐氧化尖烙铁头。将烙铁头上粘的残留物擦干净,仅剩有一层薄薄的焊锡。两端器件的贴片式元器件拆卸、焊接操作比较容易。贴片式集成电路引脚细且多、引脚间距小,周围元器件排列紧凑,拆装不易。它们的拆卸和焊接,在没有专用工具的条件下是有一定难度的,在此着重介绍贴片式集成电路的拆卸、焊接操作。
  (3)拆卸方法
  如已判断出集成电路块损坏,用裁纸刀将引脚齐根切断,取下集成电路块。注意切割时刀头不要切到线路板上。然后,用镊子夹住断脚,用尖头烙铁溶化断脚上的焊锡,将断脚逐一取下。
  (4)焊接方法
  焊接前,先用酒精将拆掉集成电路块的线路板铜萡上的多余焊锡及脏东西清理干净,将集成电路块的引脚涂上酒精松香水,并将引脚搪上一层薄锡。然后,核对好集成电路引脚位置,将集成电路块放在待焊的线路板上,轻压集成电路块,用电烙铁先焊集成电路块四个角上的引脚,将集成电路块固定好,再逐一对其它各引脚进行焊接。为了保证焊接质量,焊接时,最好使用细一些的焊锡丝,如0.6㎜焊锡丝,焊出来的效果好一些。
 

5、结束语
  变频器的维修工作是一项理论知识、实践经验与操作水平的结合的工作,其技术水平代表着变频器的维修质量。所以我们要经常阅读一些有关的书报杂志,不断了解这些电子元器件所具备的功能和特点,开拓思路,给维修工作以启迪,并将这些学到的知识应用于实际工作中,解决一些维修过程中无法解决的问题,以使自已的技术水平不断提高。
  变频器是运动控制系统中的功率变换器-变频发展分析
  变频器是运动控制系统中的功率变换器。当今的运动控制系统是包含多种学科的技术领域,总的发展趋势是:驱动的交流化,功率变换器的高频化,控制的数字化、智能化和网络化。因此,变频器作为系统的重要功率变换部件,提供可控的高性能变压变频的交流电源而得到迅猛发展。
  经历大约30年的研发与应用实践,随着新型电力电子器件和高性能微处理器的应用以及控制技术的发展,变频器的性能价格比越来越高,体积越来越小,而厂家仍然在不断地提高可靠性实现变频器的进一步小型轻量化、高性能化和多功能化以及无公害化而做着新的努力。变频器性能的优劣,一要看其输出交流电压的谐波对电机的影响,二要看对电网的谐波污染和输入功率因数,三要看本身的能量损耗(即效率)如何?这里仅以量大面广的交交变频器为例,阐述它的发展趋势:
  1、主电路功率开关元件的自关断化、模块化、集成化、智能化,开关频率不断提高,开关损耗进一步降低。
  2、变频器主电路的拓扑结构方面:
  变频器的网侧变流器对低压小容量的装置常采用6脉冲变流器,而对中压大容量的装置采用多重化12脉冲以上的变流器。负载侧变流器对低压小容量装置常采用两电平的桥式逆变器,而对中压大容量的装置采用多电平逆变器。对于四象限运行的传动,为实现变频器再生能量向电网回馈和节省能量,网侧变流器应为可逆变流器,同时出现了功率可双向流动的双PWM变频器,对网侧变流器加以适当控制可使输入电流接近正弦波,减少对电网的公害。目前,低、中压变频器都有这类产品。
  3、脉宽调制变压变频器的控制方法可以采用正弦波脉宽调制(SPWM)控制、消除指定次数谐波的PWM控制、电流跟踪控制、电压空间矢量控制(磁链跟踪控制)。
  4、交流电动机变频调整控制方法的进展主要体现在由标量控制向高动态性能的矢量控制与直接转矩控制发展和开发无速度传感器的矢量控制和直接转矩控制系统方面。
  5、微处理器的进步使数字控制成为现代控制器的发展方向:运动控制系统是快速系统,特别是交流电动机高性能的控制需要存储多种数据和快速实时处理大量信息。近几年来,国外各大公司纷纷推出以DSP(数字信号处理器)为基础的内核,配以电机控制所需的外围功能电路,集成在单一芯片内的称为DSP单片电机控制器,价格大大降低,体积缩小,结构紧凑,使用便捷,可靠性提高。DSP和普通的单片机相比,处理数字运算能力增强1015倍,以确保系统有更优越的控制性能。
  数字控制使硬件简化,柔性的控制算法使控制具有很大的灵活性,可实现复杂控制规律,使现代控制理论在运动控制系统中应用成为现实,易于与上层系统连接进行数据传输,便于故障诊断加强保护和监视功能,使系统智能化(如有些变频器具有自调整功能)。
  6、交流同步电动机已成为交流可调传动中的一颗新星,特别是永磁同步电动机,电机获得无刷结构,功率因数高,效率也高,转子转速严格与电源频率保持同步。同步电机变频调速系统有他控变频和自控变频两大类。自控变频同步电机在原理上和直流电机极为相似,用电力电子变流器取代了直流电机的机械换向器,如采用交交变压变频器时叫做直流无换向器电机或称无刷直流电动机(BLDC。传统的自控变频同步机调速系统有转子位置传感器,现正开发无转子位置传感器的系统。同步电机的他控变频方式也可采用矢量控制,其按转子磁场定向的矢量控制比异步电机简单。

   变频器的安装及其注意事项

1、引言
变频器的安装环境、安装方式、安装中主回路和控制回路接线要求以及防雷保护等各环节及注意事项,这些安装细节是确保变频器安全和可靠运行的基本条件和必要措施,直接关系着变频器及其系统运行安全和系统的可靠性,这也是许多现场电气工程师和直接用户急需了解或做得不够完善的问题。下面结合本人的工作实践,以某品牌变频器为例,对变频器的安装环境和安装方式应注意的问题、主回路和控制回路的正确接线、防雷保护设置等积累的经验与大家分享。

2、变频器的安装与注意事项
2.1
安装环境
(1)
环境温度
变频器与其他电子设备一样,对周围环境温度有一定的要求,一般为“-10+40。由于变频器内部是大功率的电子器件,极易受到工作温度的影响,但为了保证变频器工作的安全性和可靠性,使用时应考虑留有余地,最好控制在40以下;4050之间降额使用,每升高1,额定输出电流须减少1% 。如环境温度太高且温度变化大时,变频器的绝缘性会大大降低,影响变频器的寿命。
(2)
环境湿度
变频器与其他电气设备一样对环境湿度有一定要求,变频器的周围空气相对湿度≤95% (无结露),根据现场工作环境必要时须在变频柜箱中加放干燥剂和加热器。
(3)
振动和冲击
变频器在运行的过程中,要注意避免受到振动和冲击。大家知道,变频器是由很多元器件通过焊接、螺丝连接等方式组装而成。当变频器或装变频器的控制柜受到机械振动或冲击时,回导致焊点、螺丝等连接器件或连接头松动或脱落,引起电气接触不良甚至造成期间间短路等严重故障。因此,变频器运行中除了提高控制柜的机械强度、远离振动源和冲击源外,还应在控制柜外加装抗震橡皮垫片,在控制柜内的器件和安装板之间加装缓冲橡胶垫,减震。
一般在设备运行一段时间后,应对控制柜进行检查和维护。
(4)
电气环境
防止电磁波干扰
变频器的电气主体是功率模块及其控制系统的硬软件电路,这些元器件和软件程序受到一定的电磁干扰时,会发生硬件电路失灵、软件程序乱飞等造成运行事故。所以为了避免因电磁干扰,变频器应根据所处的电气环境,有防止电磁干扰的措施。例如:输入电源线、输出电机线、控制线应量远离;容易受影响的设备和信号线,应尽量远离变频器安装;关键的信号线应使用屏蔽电缆,建议屏蔽层采用360°接地法接地。
防止输入端过电压
变频器的主电路是有电力电子器件构成,这些器件对过电压十分敏感,变频器输入端过电压会造成主元件的永久性损坏。例如有些工厂自带发电机供电,电网波动会比较大,所以对变频器的输入端过电压应有防范措施。
(5)
海拔高度
变频器安装在海拔高度1000m以下可以输出额定功率。但海拔高度超过1000m,其输出功率会下降。如变频器安装地点的海拔高度与输出电流对比图1所示,可见海拔高度超过1000m,变频器输出电流减少,海拔高度为4000m时,输出电流为1000m时的40%

1.jpg (26 KB)

2009-06-03 14:34


1 变频器安装地点的海拔高度与输出电流对比图
(6)
其它环境
避免变频器安装在雨水滴淋或结露的地方;
防止粉尘、棉絮及金属细屑侵入;
避免变频器安装在油污和盐分多的场合;
远离放射性物质及可燃物。
2.2
安装方式与散热处理
变频器在运行过程中有功率损耗,并转换为热能,使自身的温度升高。粗略地说,每1kva的变频器容量,其损耗功率约为40w50w。因此,安装变频器时要考虑变频器散热问题,要考虑如何把变频器运行时产生的热量充分地散发出去,因此要讲究安装方式。
(1)
壁挂式安装
变频器的外壳设计比较牢固,一般情况下,允许直接安装在墙壁上,称为壁挂式。为了保证通风良好,所有变频器都必须垂直安装,变频器与周围物体之间的距离应满足下列条件,如图2所示:两侧大于100mm、上下大于150mm,而且为了防止杂物掉进变频器的出风口阻塞风道,在变频器出风口的上方最好安装档板。

2.jpg (30 KB)

2009-06-03 14:34


2 壁挂式变频器安装示意图
(2)
柜式安装方式
当现场的灰尘过多,湿度比较大,或变频器外围配件比较多,需要和变频器安装在一起时,可以采用柜式安装。变频器柜式安装是目前最好的安装方式,因为可以起到很好的屏蔽幅射干扰,同时也能防灰尘、防潮湿、防光照等作用。柜式安装方式的注意事项:
单台变频器采用柜内冷却方式时,变频柜顶端应安装抽风式冷却风扇,并尽量装在变频器的正上方(这样便于空气流通)
多台变频器安装应尽量并列安装,如必须采用纵向方式安装,应在两台变频器间加装隔板。

 

3、变频器的接线
3.1
主回路接线
变频器的主回路端子如图3所示。

3.jpg (22 KB)

2009-06-03 14:34


3 变频器主回路端子图
(1)
变频器三相交流输入端子(r/l1s/l2t/l3)
电源输入端子通过线路保护用断路器或带漏电保护的断路器连接到三相交流电源,无需考虑连接相序。这里要特别注意的是,三相交流电源绝对不能直接接到变频器输出端子,否则将导致变频器内部器件损坏。
(2)
变频器三相交流输出端子(c)
输出端子应按正确的相序接入电机,如果电机方向不对,则交换(u/t1v/t2w/t3)中的任意两相即可,也可以通过设置变频器参数来实现。要注意的是,输出端不能接进相电容器和电涌吸收器。
(3)
直流电抗器连接端子(12/b1)
直流电抗器连接端子接改善功率因数用的直流电抗器,端子上连接有短路导体,使用直流电抗器时,先要取出此短路导体。
注意:不使用直流电抗器时,该导体就不用去掉。
(4)
制动单元连接端子(2/b1b2)
一般小功率变频器(0.7515kw)内置制动电阻,而18.5kw以上制动电阻须外置。
(5)
直流电源输入端子(1θ)
外置制动单元的直流输入端子,分别为直流母线的正负极。
(6)
接地端子(pe)
变频器会产生漏电流,载波频率越大,漏电流越大。变频器整机的漏电流大于3.5ma,漏电流的大小由使用条件决定,为保证安全,变频器和电机必须接地。
3.2
注意事项
(1)
接地电阻应小于10ω。接地电缆的线径要求,应根据变频器功率的大小而定;
(2)
切勿与焊接机及其它动力设备共用接地线;
(3)
如果供电线路是零地共用的话,最好考虑单独敷设地线;
(4)
多台变频器接地,则应分别和大地相连,请勿使接地线形成回路,如图4所示。

4.jpg (19 KB)

2009-06-03 14:34


4 接地合理化配线
3.3
控制回路端子接线
(1)
由于低压变频器控制回路电缆的过电流一般都很小,所以控制回路电缆的尺寸规格可以规范化,为避免干扰引起的误动作,控制回路连接线应采用绞合的屏蔽线;附表为国内某品牌变频器的控制回路用线尺寸规格。
(2)
控制线与主回路电缆铺设
变频器控制线与主回路电缆或其它电力电缆分开铺设,且尽量远离主电路100mm以上;尽量不和主电路电缆平行铺设,不和主电路交叉,必须交叉时,应采取垂直交叉的方法。
(3)
电缆的屏蔽
变频器电缆的屏蔽可利用已接地的金属管或者带屏蔽的电缆。屏蔽层一端接变频器控制电路的公共端(com),但不要接到变频器地端(e),屏蔽层另一端悬空。
(4)
开关量控制线
变频器开关量控制线允许不使用屏蔽线,但同一信号的两根线必须互相绞在一起,绞合线的绞合间距应尽可能小。并将屏蔽层接在变频器的接地端e上,信号线电缆最长不得超过50m
 

 

(5) 控制回路的接地
弱电压电流回路的电线取一点接地,接地线不作为传送信号的电路使用;
电线的接地在变频器侧进行,使用专设的接地端子,不与其他的接地端子共用。
附表 控制回路用线尺寸规格

5.jpg (31 KB)

2009-06-03 14:34



4、变频器的防雷
变频器装置的防雷击措施是确保变频器安全运行的另一重要外设措施,特别在雷电活跃地区或活跃季节,这一问题尤为重要。
现在的变频器产品,一般都设有雷电吸收网络,主要用来防止因瞬间的雷电侵入,使变频器损坏。但是在实际工作中,特别是电源线架空引入的情况下,单靠变频器自带的雷电吸收网络是不能满足要求,还需要设置变频器专用避雷器。具体措施有:
(1)
可在电源进线处装设变频专用避雷器(选件)
(2)
或按规范要求在离变频器20m的远处预埋钢管做专用接地保护;
(3)
如果电源是电缆引入,则应做好控制室的防雷系统,以防雷电窜入破坏设备。
实践表明,以上方法基本上能够有效防范雷击。
5
、结束语
现阶段,在能源日趋紧张,生产成本居高不下的时代,加大节能降耗力度,最大限度降低电力消耗,是建设节约型社会的内在需要和必然选择;而变频技术无疑是实现这一目标的重要支柱。本文主要是向业界同仁介绍了变频器的安装、调试、故障处理、保养与维护;希望对于业界同仁们在电气传动设备技术改造和推进高新技术产品的普及应用工作中能有所参考和借鉴;减少由于低级错误而引发重大的经济损失。

 

变频器常见干扰故障

1、引

变频器作为一种高效节能的电机调速装置,因其较高的性能价格比,在工厂得到了越来越广泛的应用。众所周知,变频器是由整流电路、滤波电路、逆变电路组成。其中整流电路和逆变电路中均使用了半导体开关元件,在控制上则采用的是PWM控制方式,这就决定了变频器的输入、输出电压和电流除了基波之外,还含有许多的高次谐波成分。这些高次谐波成分将会引起电网电压波形的畸变,产生无线电干扰电波,它们对周边的设备、包括变频器的驱动对象--电动机带来不良的影响。同时由于变频器的使用,电网电源电压中会产生高次谐波的成分,电网电源内有晶闸管整流设备工作时,会引导电源波形产生畸形。另外,由于遭受雷击或电源变压器的开闭,电功率用电器的开闭等,产生的浪涌电压,也将使电源波形畸变,这种波形畸变的电网电源给变频器供电时,又将对变频器产生不良影响。文章对于上述现象进行了分析并提出了降低这些不良影响的措施。

2、外界对变频器的干扰

供电电源对变频器的干扰主要有过压、欠压、瞬时掉电;浪涌、跌落;尖峰电压脉冲;射频干扰。变频器的供电电源受到来自被污染的交流电网的谐波干扰后若不加处理,电网噪声就会通过电网的电源电路干扰变频器。变频器的输入电路侧,是将交流电压变成直流电压。这就是常称为"电网污染"的整流电路。由于这个直流电压是在被滤波电容平滑之后输出给后续电路的,电源供给变频器的实际上是滤波电容的充电电流,这就使输入电压波形产生畸变。

1)电网中存在各种整流设备、交直流互换设备、电子电压调整设备,非线性负载及照明设备等大量谐波源

电源网络内有这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其它设备产生危害的干扰。例如:当供电网络内有较大容量的晶闸管换流设备时,因晶闸管总是在每相半周期内的部分时间内导通,故容易使网络电压出现凹口,波形严重失真。它使变频器输入侧的整流电路有可能因出现较大的反向回复电压而受到损害,从而导致输入回路击穿而烧毁。

2)电力补偿电容对变频器的干扰

电力部门对用电单位的功率因数有一定的要求,为此,许多用户都在变电所采用集中电容补偿的方法来提高功率因数。在补偿电容投入或切出的暂态过程中,网络电压有可能出现很高的峰值,其结果是可能使变频器的整流二极管因承受过高的反向电压而击穿。

3)电源辐射传播的干扰信号

电磁干扰(EMI),是外部噪声和无用信号在接收中所造成的电磁干扰,通常是通过电路传导和以场的形式传播的,即以电磁波方式向空中幅射,其辐射场强取决于干扰源的电流强度、装置的等效辐射阻抗以及干扰源的发射频率。

对于(1)、(2)两项产生的干扰抑制可以在变频器输入电路中,串入交流电抗器,它对于基波频率下的阻抗是微不足道的。但对于频率较高的高频干扰信号来说,呈现很高的阻抗,能有效地抑制干扰的作用。对于(3)项的干扰信号主要通过吸收方式来削弱。变频器电源输入端,通常都加有吸收电容。也可以再加上专用的"无线电干扰滤器",来进一步削弱干扰信号。

3、变频器对周边设备的干扰及对策

上面已经讲过变频器能使输入电源电压产生高次谐波。同时,变频器的输出电压和电流除了基波之外,还含有许多高次谐波的成分,它们将以各种方式把自己的能量传播出去,这些高次谐波对周围设备带来不良的影响。其中,供电电源的畸变,使处于同一供电电源的其他设备出现误动作,过热、噪声和振动;产生的无线干扰电波给变频器周围的电视机、收音机、手机等无线电接收装置带来干扰,严重时不能正常工作;对变频器的外部控制信号产生干扰,这些控制信号受干扰后,就不能准确、正常地控制变频器运行,使被变频器驱动的电动机产生噪音,振动和发热现象。

1)对接在同一电源设备带来的干扰

当变频器的容量较大时,将使网络电压产生畸变,通过阻抗耦合或接地回路耦合将干扰传入其它电路。消除或削弱对接在同一电源的设备带来的干扰,可以将变频器的输入端串入交流电抗器,在变频器的整流侧插入直流电抗器,也可以在变频器电源输入端插入滤波器。

LC
滤波器是被动滤波器,它由电抗和电容组成对高次谐波的共振回路,从而达到吸收高次谐波的目的。有源滤波器的工作原理是:通过对电流中高次谐波进行检测,并根据检测结果,输入与高次谐波成分相位相反的电流来削弱高次谐波的目的。

2)对于产生的无线电干扰波

目前,变频器绝大部分是采用PWM控制方法。变频器输出信号是高频的开关信号,在变频器的输出电压、输出电流中含有高次谐波,通过静电感应和电磁感应,产生无线电干扰波。这些干扰波有的通过电线传导,有些辐射至空中的电磁波和电场直接辐射。而辐射场中的金属物体还可能形成二次辐射。同样,变频器外部的辐射也会干扰变频器的正常工作。

电线传导的无线电干扰波的抑制,可以采用噪声滤波变压器,对高次谐波形成绝缘;插入电抗器,以提高对高次谐波成分的阻抗,在变频器的输入端插入滤波器。

辐射无线电干扰波的抑制,较传导无线电干扰波要困难一些。这种无线电干扰的大小,决定于安装变频器设备本身的结构,和电动机电缆线长短等许多因素有关。可以尽量缩短电动机电线,电线采用双绞措施,减少阻抗;变频器输入、输出线装入铁管屏蔽;将变频器机壳良好地接;变频器输入、输出端串接电抗器,插入滤波器。
3)对于产生的噪声干扰
由于变频器采用了PWM控制方式,变频器的输出电压波形不是正弦波,通过电动机的电流也难免含有许多谐波。变频器输出的谐波频率与转子固有频率的共振,在转子固有频率附近的噪声增大,变频器输出的谐波分量使铁心、机壳、轴架等谐波在其固有频率附近的噪声增大。因此,利用变频器对电动机进行调速控制时,电动机绕组和铁芯由于谐波的成分而产生噪声。
通常,采用变频器对电动机进行驱动时,电动机产生的噪音要比电网电源直接驱动产生的噪音高出510dB
对于噪音的抑制可以采取的措施为:
选用以IGBT等为逆变模块的载波频率较高的低噪音变频器。选用变频器专用电动机,在变频器与电动机之间串入电抗器,以减少PWM控制方式产生的高次谐波。
在变频器与电动机之间插入可以将输出波形转换成正弦波的滤波器。
选用低噪音的电抗器。
4)对于产生的振动干扰
采用变频器对电动机进行调速控制时,同噪音相同的原因,会使电动机产生振动。特别是较低阶的高次谐波所产生的脉动转矩,给电动机的转矩输出带来较大的振动。若机械系统与这种振动发生共振时,其振动就更为严重。
通常可以采取以下措施减小振动:
强化机械结构的刚性,将刚性连接改为强性连接。
在变频器与电动机之间串入电抗器。
降低变频器的输出压频比。
改变变频器的载波频率。
在变频器对电动机进行调速过程中,如果调速范围较大时,应先测到机械系统的共振频率,然后利用变频器的频率跳跃功能,避开这些共振频率。如果转距有余量,可以将Uf给定小些。
5)对于导致控制部件电动机过热的干扰
采用变频器对电动机进行调速控制,由于高次谐波的原因,即使是对同一电动机,在同一频率下运行,电动机也将增加5%~10%的电流。电动机温度自然会提高。此外,普通电动机的冷却风扇安装在电动机轴上的,在连续进行低速运行时,由于自身的冷却风扇的冷却能力不足,而出现电动机过热现象。
电动机过热的对策有以下几种:
为电动机另配冷却风扇,改自冷式为他冷式。增加低速运行时的冷却能力。
选用较大容量的电动机。
改用变频器专用电动机。
改变调速方案,避免电动机连续低速运行。
随着工厂电气自动化程度的提高,各种干扰也日益增多,只有对变频器的干扰问题有深入的认识,并采取相应的处理措施,才能够减少彼此之间的相互危害,更大程度的确保生产的正常进行和设备的稳定。

   如何提高变频调速系统的可靠性

下面将从三个方面来讨论如何提高变频调速系统的可靠性。
提高变频器本身质量和可靠性。
变频器生产厂商如何根据用户高可靠性的要求制造出性能稳定,运行可靠,价格合理的产品满足市场需求也是这个产品或这个产业能否持续发展的关键。
具体要求有下列几项:
变频器的电路结构应力求简单可靠
a.
首选采用真正的高一高(--)直接变频主电路。
b.
功率单元愈少愈好,尽量避免功率单元和电力电子器件的串联。因为串联系统的可靠度减小(N次幂)、而串联系统的失效率增大(N)。虽然并联系统有利于可靠性的提高,减少失效率,增长装置的平均寿命,但是目前电力电子器件的电流可达3KA--4KA水平,所以不并联也可以使用了,目前主要问题是电力电子器件的耐压水平进一步提高后,电力电子器件就可以不串不并,便会大大提高变频器的可靠性。
变频器中电力电子模块的选用--耐压和电流额定值必须具有充分的裕度。外国某变频器制造商曾说:“功率模块充分降额使用可以换来装置的可靠性。反之,所选功率模块参数接近计算值,没有一定的余量,存在侥幸心理,结果会造成变频器功率模块烧毁。
变频器中电力电子模块应有充分的通风量和冷却措施。保证在允许结温下运行,离允许结温愈低,变流装置的可靠性愈高。
究其原因不外两方面:
(1)
功率模块所选耐压和电流额定太小。
(2)
所购进的功率模块是否正品?是否名牌厂商产品?目前国内IGBT功率模块还无法满足高压变频器的要求,但从国外购进IGBT,其质量又不尽如人意。其一,根本不可能购到军需品(军品)和一等品(正品),大多属于有某1-2个指标不合格而被筛选下来的产品。其二,国内一般不具备严格的动态测试设备。那些未经挑选的功率模块,没有通过电热老化处理。不合格的功率模块装到整机上,发生故障甚至烧毁也在情理之中。
功率模块冷却方式可以风冷,水冷以及先进的热管技术。不论何种方式,需将整流变压器和变流装置损耗产生的热量带走,保持允许的结温。
根据装置的容量,损耗大小,制造商提出必须的通风量。
1)
、新鲜冷空气,从变频器柜底部送入,由箱体顶部排出。空气逆方向流过(自上而下)是不允许的。
2)
、变频器柜下部进风处应设置过滤网,防灰尘和油雾等杂质进入柜内。
保证变频器必需的通风量(3/分或CFM)目的是为了散热冷却,使功率模块正常工作,不致于超过允许结温。另外有些工矿地处沿海、江和湖泊或是盐雾,潮湿和腐蚀气体环境,还应有防潮,防腐措施,例如,为了防止停役几天或几周后,变频器柜内受潮,绝缘下降,影响顺利开车,变频器柜内设有低压电加热器(电热丝加热,红外线电加热或远红外线电加热装置)。当变频器停役时,自动地将电加热器投入工作,确保箱内去湿和干燥。
变频器必须制作精良,连接牢靠
具体要求:
a.
连接件要少,尽量避免插件方式(易松动,不牢靠),以焊接代替接线端子,尽量少用电位器。
b.
采用大面积整块印刷电路板。
c.
采用无接线独特结构的电力电子功率模块,提高产品的可靠性。
d.
合理布局。例如:整流变压器与变流装置之间的隔热以及防电磁干扰措施;高压与低压之间的光电隔离和采用光缆传输。 删除

·          

变频器出厂前应进行严格地带载试验和48-72小时性能考核。一台变频器由大量电气元器件组装而成。除了选用名牌和正品的符合技术要求的器件,并经过测试筛选,清除不可靠的元器件外,出厂前必须使变频器带电运行考验。一般要进行48-72小时连续运行考验,要求特别可靠的场合进行7昼夜(24*7=168小时)考验,其考核条件为:
a.
带负载试验(不是空载或轻载)
b.
具备实际应用场合的温度和相对湿度。
凡经试验检测符合技术规范,并通过长时间考核的变频器出厂投运以后,都会有很高的可靠性。
根据生产机器负荷要求和电动机规格参数,正确选择变频器形式及容量匹配
如果单有变频器本体的高可靠性,而变频器选型和容量匹配不适当,组成的变频调速系统也不可能达到很高的可靠性,甚至无法运转,为此,我们必须:
首先根据负荷性质,正确选用变频器类型。总的原则就是什么性质负载特性配什么特性的变频器。
(1) 恒转矩生产设备--在调速范围内,负载力矩基本恒定不变。应选具有恒转矩性能的变频器。其过载能力为150%额定电流维持1分钟。
(2) 平方转矩生产设备--在调速范围内,负荷力矩与转速的平方成正比,即Mn2,离心式风机,水泵为它的典型代表。具有Mn2特性的变频器其过载能力较小,110%-120%额定电流过载1分钟,
(3) 恒功率负荷生产设备-在调速范围内,转速低力矩大;转速高力矩小,即M•N C(常数)。典型设备如机床及卷绕机构。
当然有些变频器厂商的产品不分恒转矩和平方转矩负载,是通用型的。两种负荷都可选用。恒功率负荷特性是依靠V/F比来实现,并没有恒功率性能的变频器。
归纳起来,选用变频器型号应与负载力矩相适应。恒转矩特性的变频器可以用于风机水泵负载,反过来,平方转矩特性的变频器绝不能用于恒转矩特性的负载。
其次根据电动机名牌额定参数来匹配变频器容量
通常匹配原则
EINV≥PEmotor(kW) IEINV≥1.1-1.2IEmotor(A)
重视电流这个参数,因为电力电子模块的功耗是IXU(电流与管压降之积),与变频器的输出电压大小并没有直接关系。而变频器的输出功率是它与输出电压、输出电流之积成正比。实践中往往发生输出电流已超过,但输出功率并未超过,结果造成电力电子功率模块烧毁的故障。因此,应主要考虑电流指标。
变频调速主电路结构应用形式多种多样,如何选用匹配呢?
 

   

(1) 一对一单电动机变频调速方式。
因为变频器具有软起动(低压低频起动--逐步升压升频升速),不存在冲击电流现象。
因此选用IEINV≥(1.1-1.2)IE motor
按确定的IEINV电流值,查产品目录,可找到合适的变频器
(2) 多电动机变频调速方式(多电机共用一台大变频器)
比如,有N台相同参数的电动机,同期起动电动机为K台,最大电流状况是当(N-K)台电机已起动完毕,处于高频高压运行之下,最后K台电机直接起动(直接起动电流很大,异步电机5-7倍,永磁同步电机10-14倍,设为IQ motor)
选用变频器的充分且必要的条件是:
a)IEINV a≥(1.1-1.2)[N•IE motor]
b)IEINV b≥(1.1-1.2)[(N-K)•IE motor +K•IQ motor]
IEINVIE INV选择电流大的数值,再查产品目录,确定变频器的规格。
 

(3) 共用直流电源的多逆变器多电机变频调速方式(逆变器与电机仍属于11方式)
随着变频技术的进步,出现了小变频器多电机方案(实质类同11变频调速)和共用直流电源方案(多个逆变器共用一套直流电源,一个逆变器驱动一台电机。)
共用直流电源电流计算公式:
IE con≥(1.1-1.2)[IE motor1+ ……+IE motorn]
(1.1-1.2)•N•IE motor
变频器应有良好的运行环境和维护保养
尽管选用了高质量的变频器,并且变频驱动系统匹配也正确,如果希望获得长周期安全稳定运行,还应有一个良好运行环境以及做好设备维护保养。
(1) 变频器应有的运行环境
几乎所有的变频器制造厂商都说,可以在0-40温度,相对湿度RH≤95%(不结露)环境下工作。但是,为了变频器更有利的运行,希望变频器置于空气调节的环境里,温度控制在25±3,相对湿度RH≤70%-75%。实践证明,置于空调环境下变频器的故障机率要比没有空调环境变频器少得多,系统的可靠性增加很多。
另外,变频器的空调最好采用独立专用空调,避免使用车间空调或中央空调,因为中央空调、车间空间会把空气中的油污,灰尘和腐蚀性气体进入变频器柜内,引起变频器电力电子、微电子(IC集成电路)元器件的损坏。
(2) 加强每天的巡检及定期维修。
日常运行巡检项目,主要检查有无异常现象。例如冷却系统异常、过热、变色、异味、异声和异常振动。定时抄录变频器的输入和输出的电气参数是否正常。
定期维修--变频器停役后进行断电维修。除了清扫和紧固接线端子外,重点维修项目(即变频器薄弱环节):
a.
电介电容器是否变形和渗漏电介液;是否腐蚀印刷电路板,造成绝缘电阻下降,引起IC软故障。国外厂商规定3-5年运行后,应将电介电容器强制更换。
b.
冷却风扇及过滤网清理。2-3年运行后,冷却风扇也应强制更换。
c.
印刷电路板是否腐蚀损坏。最好进行喷膜处理,可以抗腐蚀性,增强绝缘性能。我们公司某化纤厂对安川变频器印板进行清洗,燥干和喷膜处理,修复了几十台损坏的变频器,并在东芝变频器十多台上推广这个喷膜处理技术,取得良好的效果--修复后再也没有发生类似故障。当然在进行喷膜处理时,特别要注意保护好各类接插件口,不要让膜层保护剂喷入,以免引起接触不良。具体做法,接插件口可先用遮盖剂或塑料胶带遮后再喷膜。

采用交流变频调速的目的:一是生产上要求,提高产量和质量;另一是风机水泵调速节能。提高变频调速系统的可靠性非常重要,一方面从提高变频器本身的产品质量,把好设计、选元器件,制作、安装,试验等环节的质量关,另一方面如何匹配变频器以及做好日常维护保养工作也不容忽视。

   (3) 共用直流电源的多逆变器多电机变频调速方式(逆变器与电机仍属于11方式)
随着变频技术的进步,出现了小变频器多电机方案(实质类同11变频调速)和共用直流电源方案(多个逆变器共用一套直流电源,一个逆变器驱动一台电机。)
共用直流电源电流计算公式:
IE con≥(1.1-1.2)[IE motor1+ ……+IE motorn]
(1.1-1.2)•N•IE motor
变频器应有良好的运行环境和维护保养
尽管选用了高质量的变频器,并且变频驱动系统匹配也正确,如果希望获得长周期安全稳定运行,还应有一个良好运行环境以及做好设备维护保养。
(1) 变频器应有的运行环境
几乎所有的变频器制造厂商都说,可以在0-40温度,相对湿度RH≤95%(不结露)环境下工作。但是,为了变频器更有利的运行,希望变频器置于空气调节的环境里,温度控制在25±3,相对湿度RH≤70%-75%。实践证明,置于空调环境下变频器的故障机率要比没有空调环境变频器少得多,系统的可靠性增加很多。
另外,变频器的空调最好采用独立专用空调,避免使用车间空调或中央空调,因为中央空调、车间空间会把空气中的油污,灰尘和腐蚀性气体进入变频器柜内,引起变频器电力电子、微电子(IC集成电路)元器件的损坏。
(2) 加强每天的巡检及定期维修。
日常运行巡检项目,主要检查有无异常现象。例如冷却系统异常、过热、变色、异味、异声和异常振动。定时抄录变频器的输入和输出的电气参数是否正常。
定期维修--变频器停役后进行断电维修。除了清扫和紧固接线端子外,重点维修项目(即变频器薄弱环节):
a.
电介电容器是否变形和渗漏电介液;是否腐蚀印刷电路板,造成绝缘电阻下降,引起IC软故障。国外厂商规定3-5年运行后,应将电介电容器强制更换。
b.
冷却风扇及过滤网清理。2-3年运行后,冷却风扇也应强制更换。
c.
印刷电路板是否腐蚀损坏。最好进行喷膜处理,可以抗腐蚀性,增强绝缘性能。我们公司某化纤厂对安川变频器印板进行清洗,燥干和喷膜处理,修复了几十台损坏的变频器,并在东芝变频器十多台上推广这个喷膜处理技术,取得良好的效果--修复后再也没有发生类似故障。当然在进行喷膜处理时,特别要注意保护好各类接插件口,不要让膜层保护剂喷入,以免引起接触不良。具体做法,接插件口可先用遮盖剂或塑料胶带遮后再喷膜。

采用交流变频调速的目的:一是生产上要求,提高产量和质量;另一是风机水泵调速节能。提高变频调速系统的可靠性非常重要,一方面从提高变频器本身的产品质量,把好设计、选元器件,制作、安装,试验等环节的质量关,另一方面如何匹配变频器以及做好日常维护保养工作也不容忽视。

回复主题 登录后回复